
EE 508

Lecture 9

The Approximation Problem

Classical Approximations

Butterworth
Chebyschev
Elliptic
Bessel
Thomson



Least Squares Approximations of Transfer Functions
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Possible uses of these observations (four algorithms)

1. Guess poles and obtain optimal zero locations

2. Start with a “good” T(s) obtained by any means and improve by selecting optimal 

zeros

3. Guess poles and then update estimates of both poles and zeros, use new 

estimate of poles and again update both zeros and poles, continue until 

convergence or stop after fixed number of iterations

4. Guess poles and obtain optimal zeros.  Then invert function and cost and obtain 

optimal zeros (which are actually poles).  Then invert again and obtain optimal 

zeros.  Process can be repeated.  - Weighting may be necessary to de-

emphasize stop-band values when working with the inverse function

Review from Last Time



Least Squares Approximations of Transfer Functions
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Comments/Observations about LMS approximations

1. As with collocation, there is no guarantee that TA(s) can be obtained from HA(ω2)

2. Closed-form analytical solutions exist for some useful mean square based cost functions

3. Any of the LMS cost functions discussed that have an analytical solution can have the terms 

weighted by a weight wi.  This weight will not change the functional form of the equations but 

will affect the fit

4. The best choice of sample frequencies is not obvious (both number and location)

5. The LMS cost function is not a natural indicator of filter performance

6. It is often used because more natural indicators are generally not mathematically tractable

7. The LMS approach may provide a good solution for some classes of applications but does not 

provide a universal solution

Review from Last Time



Pade’ Approximations
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Consider the polynomial

The rational fraction Rm,n(s) is said to be a (m,n)th order Pade’ approximation of 

TD(s) if TD(s)B(s) agrees with A(s) through the first m+n+1 powers of s

Define the rational fraction Rm,n(s) by

Note the Pade’ approximation applies to any polynomial with the argument being 

either real, complex, or even an operator s

Can operate directly on functions in the s-domain

Review from Last Time



Pade’ Approximations

• Useful for order reduction of all-pole or all-zero approximations

• Can map an all-zero approximation to a realizable rational fraction in the 

s-domain

• Can extend concept to provide order reduction of higher-order rational 

fraction approximations

• Can always maintain stability or even minimum phase by reflecting any 

RHP roots back into the LHP

• Pade’ approximation is heuristic (no metrics associated with the approach)

• No guarantees about how good the approximations will be

Review from Last Time



Approximations

• Magnitude Squared Approximating Functions – HA(ω2)

• Inverse Transform - HA(ω2)→TA(s)

• Collocation

• Least Squares Approximations (Cost Function Minimization)

• Pade Approximations

• Other Analytical Optimizations

• Numerical Optimization

• Canonical Approximations
– Butterworth

– Chebyschev

– Elliptic

– Bessel

– Thomson

All special cases of analytical approximations



The Approximation Problem
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• Magnitude Squared Approximating Functions

• Inverse Transform

• Collocation

• Least Squares (Cost function minimization)

• Pade’ Approximations

• Other Analytical Optimization

• Numerical Optimization

• Canonical Approximations
→Butterworth (BW)

→Chebyschev (CC)

→Elliptic

→Bessel

→Thomson

Approach we will follow:
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Approximations
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Butterworth Approximations

• Analytical formulation:
–   All pole approximation

–    Magnitude response is maximally flat at ω=0

–    Goes to 0 at ω=∞

–     Assumes value            at ω=1

–     Assumes value of 1 at ω=0

–     Characterized by {n,ε}   

• Emphasis almost entirely on performance at 
single frequency

"On the Theory of Filter Amplifiers", Wireless  Engineer (also called 

Experimental Wireless and the Radio Engineer), Vol. 7, 1930, pp. 536-541. 
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Butterworth Approximations
• Analytical formulation:

–   Magnitude response is maximally flat at ω=0

–     Goes to 0 at ω=∞
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Stephen Butterworth   1885-1958



Stephen Butterworth (1885-1958) was a British physicist who invented the Butterworth filter[1], a class 

of electrical circuits that are used to filter electrical signals.

Stephen Butterworth was born on 11 August 1885 in Rochdale, England (a town located about 10 miles 

north of the city of Manchester). He was the son of Alexander Butterworth, a postman, and Elizabeth 

(maiden name unknown).[2] He was the second of four children.[3] In 1904, he entered the University of 

Manchester, from which he received, in 1907, both a Bachelor of Science degree in physics (first class) 

and a teacher's certificate (first class). In 1908 he received a Master of Science degree in physics.[4] For 

the next 11 years he was a physics lecturer at the Manchester Municipal College of Technology. He 

subsequently worked for several years at the National Physical Laboratory, where he did theoretical and 

experimental work for the determination of standards of electrical inductance. In 1921 he joined the 

Admiralty's Research Laboratory. Unfortunately, the classified nature of his work prohibited the 

publication of much of his research there. Nevertheless, it is known that he worked in a wide range of 

fields; e.g., he determined the electromagnetic field around submarine cables carrying a.c. current,[5] 

and he investigated underwater explosions and the stability of torpedos. In 1939, he was a "Principal 

Scientific Officer" at the Admiralty Research Laboratory in the Admiralty's Scientific Research and 

Experiment Department.[6] During World War II, he investigated both magnetic mines and the 

degaussing of ships (as a means of protecting them from magnetic mines).

He was a first-rate applied mathematician. He often solved problems that others had regarded as 

insoluble. For his successes, he employed judicious approximations, penetrating physical insight, 

ingenious experiments, and skillful use of models. He was a quiet and unassuming man. Nevertheless, 

his knowledge and advice were widely sought and readily offered. He was respected by his colleagues 

and revered by his subordinates.

In 1942 he was awarded the Order of the British Empire.[7] In 1945 he retired from the Admiralty 

Research Laboratory. He died on 28 October 1958 at his home in Cowes on the Isle of Wight, 

England.[8][9
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In Wireless Engineer (also called Experimental Wireless and the Wireless 

Engineer), vol. 7, 1930, pp. 536–541 - "On the Theory of Filter Amplifiers"-S. 

Butterworth 

Butterworth had a reputation for solving "impossible" mathematical 

problems. At the time filter design was largely by trial and error because of 

their mathematical complexity. His paper was far ahead of its time: the filter 

was not in common use for over 30 years after its publication. Butterworth 

stated that;

"An ideal electrical filter should not only completely reject the unwanted 

frequencies but should also have uniform sensitivity for the wanted 

frequencies."

From:     http://en.wikipedia.org/wiki/Butterworth_filter

http://www.expertran.com/butter/paper.pdf
http://www.expertran.com/butter/paper.pdf
http://en.wikipedia.org/wiki/Filter_design
http://en.wikipedia.org/wiki/Butterworth_filter


Butterworth Approximation
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Butterworth Approximation
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Butterworth Approximation
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Butterworth Approximation
( )

2 2n

1
H ω =

1+ ω

Roots of H(ω) are poles and are at

( )1/ 1
1/(2n)

ω  −= −n

Re

Im

n



2n



1

Re

n



2n



1

Im

Poles of H(ω) are a scaled version of the roots of -1

Roots of -1 are uniformly spaced around a unit circle with symmetry around real and 

imaginary axis

n even n odd



Butterworth Approximation
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Does inverse mapping to TAM(s) exist?



Butterworth Approximation
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Butterworth Approximation
Poles of TBW(s)
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Butterworth Approximation
What is the Q of the highest Q pole for the BW approximation?  
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Highest Q pole corresponds to index k=0.  Consider the Quadrant 2 high-Q pole
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Butterworth Approximation
What is the Q of the highest Q pole for the BW approximation?  
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Butterworth Approximation
What order can be used if goal is to keep the highest Q BW pole less than 10? 
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Solving for n, obtain n=31

What order can be used if goal is to keep the highest Q BW pole less than 2? 
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Solving for n, obtain n=6

Observe the pole Q of the BW approximation is quite low, 

even for high order BW approximations!



Butterworth Approximation

Order needs to be rather high to get steep transition

Figure from Passive and Active 

Network Analysis and 

Synthesis, Budak



Butterworth Approximation
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Phase is quite linear in passband (benefit unrelated to design requirements)

Figure from Passive and Active 

Network Analysis and 

Synthesis, Budak



Butterworth Approximation
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Attenuation in stopband is quite gradual 

Figure from Passive and Active 

Network Analysis and 

Synthesis, Budak



Butterworth Approximation
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Pole locations and denominator polynomial  

Figure from Passive and Active 

Network Analysis and 
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Butterworth Approximation
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Pole locations and denominator polynomial  

Figure from Passive and Active 

Network Analysis and 

Synthesis, Budak

Question:  Why are the coefficients of s5, s4,s3,s2 and s not equal to 0?

Answer:  Coefficients vanished in HBW(ω2) but not in TBS(s)



Butterworth’s vision was a bit different than what we 

presented but the results are completely attributable to 

Butterworth

From the seminal Butterworth paper:



Butterworth used a trig identity to factor (1) into a product of 4th order terms 

and then synthesized a circuit that realized each factor (no mention made of 

inverse mapping to T(s)) 



Butterworth Approximation

• Widely Used Analytical Approximation

• Characterized by {ε,n}

• Maximally flat at ω=0

• Almost all emphasis placed on characteristics at single frequency (ω=0)

• Transition not very steep (requires large order for steep transition)

• Pole Q is quite low

• Pass-band phase is quite linear (no emphasis was placed on phase!)

• Poles lie on a circle

• Simple closed-form analytical expressions for poles and |T(jω)|

Summary

Remember we are working on the approximation problem 

with no considerations at this point for synthesis!
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Did Butterworth get lucky since the inverse mapping from H(ω) to T(s) 

exists for all n and ε ?
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Filter Design 

Process

Establish 

Specifications

- possibly TD(s) or HD(z)

- magnitude and phase

    characteristics or restrictions 

- time domain requirements

Approximation

- obtain acceptable transfer

   functions  TA(s) or HA(z)

- possibly acceptable realizable 

   time-domain   responses 

Synthesis

- build circuit or implement algorithm

   that has response close to TA(s) or 

   HA(z) 

-  actually realize TR(s) or HR(z)

Filter



Butterworth Approximation
What can be done to sharpen the transition of the BW approximation?

Add zeros on imaginary axis  in stop band

• May need to readjust the poles to get good transition region

• Analytical expressions for poles may not be easy to obtain
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Stay Safe and Stay Healthy !



End of Lecture 9
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